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Introduction v o
In comparison with other living techniques, two of the unique features of
‘living’ free radical polymerizations are their compatibility with a wide range
*of functional groups, coupled with their ability to prepare well defined random
and block copolymers from a variety of monomers.! We have recently shown
that replacement of TEMPO as the mediating nitroxide in ‘living’ free radical
polymerizations by c-hydrogen derivatives leads to monomer selection and
functional group compatibility approaching that of ATRP based systems.? The
ability of these new alkoxyamines, such as 1, to mediate the
homopolymerization of a wide variety of monomers should permit a much
greater range of well defined random, block, and star copolymers to be

prepared under simplified conditions.

Results and Discussion — Random Copolymers

Initially the random copolymerization of styrene and butyl acrylate
Mmixtures in the presence of 1 and acetic anhydride at 125°C was examined. In
contrast to the results obtained with TEMPO, both molecular weight and
polydispersity control was excellent, with all molecular weights being within
10% of the theoretical molecular weights and polydispersities between 1.08
and 1.20. Given the control afforded by 1 in the homopolymerization of both
styrenics and acrylates, this ability to prepare well-defined random

copolymers is expe@tkd.
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However a more surprising result was obtained when the random

copolymerization of styrene and methyl methacrylate was examined, In this
case, well defined random copolymers ¢ould be obtained up to very high
methyl methacrylate ratios (ca. 85%) and only at methacrylate ratios of greater
than 90% did the polydispersity become greater than 1.50. Significantly no
resonances were observed in the 5.50-6.20 ppm region, characteristic of
alkene terminated chains.. To better appreciate these results, the
polydispersities obtained for the random copolymerization of styrene/butyl
acrylate and styrene/methyl methacrylate mixtures initiated by 1 were
compared with those for TEMPO based systems, 2. Significantly greater
control is observed with 1 compared 6 TEMPO at essentially all molar ratios
and becomes exacerbated at molar percentages of styrene of less than 60%
(Figure 1). Similardy the random copolymerization of acrylates and
methacrylates, which fails .for TEMPO based systems such as 2, was a
controlled process in the presence of 1. For example, a mixture of ¢-butyl
acrylate (100_equiv.) and methyl methacrylate (100 equiv.) were heated at
125°C in the presence of 1.0 eguivalents of 1 and 0.05 equiv. of the free
nitroxide 3. The copolymer obtained was shown to be a statistical random
copolymer by 'H NMR and analysis by GPC, M, = 22 000 PD. = 1.19,
demonstrating that the level of control was similar to that found above for the
styrene/methacrylate random copolymers. ~ This was further confirmed by
examination of a wide range of copolymer ratios which showed that well
defined materials (PD. < 1.35) were obtained up to 80% of methyl

3

DANESS 9T oz

methacrylate and only at higher methacrylate ratios did polydispersities
become greater than 1.50, )
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Figure 1. Relationship between polydispersity of the resulting random
copolymers and mole percent of styrene in the feed mixture for the

" copolymerization of (i) styrene and n-butyl acrylate (W), (ii) styrene and

methyl methacrylate (®) mediated by TEMPO based systems, 2, compared
with (iii) styrene and n-butyl acrylate (O), and (iv) styrene and methyl
methacrylate (03) mediated byl. o ,

Similar contro! was obtained with other monomers such as acrylamides
and acrylonitrile, which clearly dcmons.tr’gtes.that an extremely diverse set of
well-defined random copolymers can be easily, prepared using nitroxide
mediated processes.

Table 1. Polydispersity and polystyrene eqﬁivalcnt molecular weights, M,,
for the bulk random copolymerization of styrene and a variety of
functionalized monomers (200 equiv.) in the presence of 1 at 120°C.

Comonomer Ratio of M, Po]ydispérsity
Sty/Comonomer .
90/10 21500 ° 1.09
\\_C 70/30 22 000 112
—CN 50/50 22 500 114
. ' 30/70 19 000 1.06
\ P 70730 - 20000 11
50/50 18 000 111
CHE 30770 19 500 114
\ h 90/10 19 500 1.09
__/—-NMez 80/20 20 000 1.08
0 50/50 20 500 1.12
\ 90/10 -19.500 - 1.07
70/30 17 000 112
O—CH,CF,CF,CF3 50/50 - 18000 1.22-

315

The ability to polymerize functionalized monomers under controlled
conditions is a major advantage of ‘living' free radical procedures3* The
demonstrated capacity of 1 to polymerize a wide variety of monomer families
suggested that it might also be compatible with reactive functional groups
such as carboxylic acids, epoxides, etc. ' This feature ‘was probed by
copolymerizing mixtures of styréne, or butyl acrylate, with a variety of
reactive monormer units. As shown in Tables 1 and 2, a high degree of control
was maintained over the random copolymerization even in the presence of a
significant amount of the reactive monomer unit, ca. 1:1. At low levels of
incorporation, ca. <25%, the influence of functionalized monomers on the
level of control was negligible. For a range of functional groups, from basic
amine, acidic carboxylate, fluorocarbon, to hydrophilic groups low
polydispersity, well-defined polymer were obtained. Only at high loading
levels (ca. 50%) and in select cases, such as acrylic acid and glycidyl acrylate,
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did the polydispersities rise to 1.5-1.55. Similar difficulties in the
polymerization ‘of acrylic acid was observed in ATRP procedures by
Matyjaszewski where the catalyst is deactivated by the co-ordinating ability of
the monomer.

Table 2. Polydispersity and polystyrene equivalent molecular weights, M,
for the bulk random copolymerization of butyl acrylate and a variety of
functionalized monomers (200 equiv.) in the presence of 1 and 3 (0.05 equiv.)

at 120°C.
Comonomer Ratio of M, Polydispersity
: Acrylate/Comonomer
90/10 17 000 118
80/20 14 500 115
\_CN 70/30 16 500 1.13
50/50 18 000 1.09
30770 © 18000 1.1
10/90 17 000 115
. 95/5 19 500 112
\ 90/10 21 500 11
80/20 22 000 126
OH 50/50 20 000 155
o " 70130 15 500 1.18
\_¢ 50/50 14.500 119
NMe; 3070 - 17 000 115
\ S ' 95/5 19 000 1.14
\—-’( Y2 90/10 18000 119
. 50/50 18000 1.30
5
N ¢ 90/10 19500° |  L12
O—CH,CF,CF,CF 50/50 19 000 125
) 90/10 20 000 117
g 80/20 19 000 115
OCH,CH,0CH;CH,0CH, 50/50 17 000 135
o o . 95/5 20000 1.16
\ /( : 90/10 . . 21000 118
/A - 8020 23 000 118
0 50/50 38 000 1.52

Block Copolymers - .= . , :

The presence of dormant initiating centers at the chain end/s of linear
polymers prepared by both nitroxide mediated and ATRP procedures provides
unique opportunities for the preparation of block oopolhymer structures and
this feature has been exploited by numerous groups® While the block
copolymers available from ‘living’ free radical procedures may not be as well
defined as the best examples available from anionic techniques, they have the
advantage of greater availability and a significantly greater tolerance of
functional groups. . ) -

In exploiting these opportunities, nitroxide mediated systems has lagged
behind ATRP based systems,. primarily due to the more limited choice of
monomer.units that could be efficiently homopolymerized. “The ability of 1 to
overcome this limitation opens up the possibility of preparing a wide range of
block copolymer structures using nitroxide mediated procedures.- Initially, an
alkoxyamine functionalized poly(n-buty! acrylate) block, 4 (M, = 7 800, PD.
= 1.08), was initially grown and then used to polymerize 200 equivalents of
styrene in the presence of acetic anhydride (1.0 equivalents) at 123°C under
argon for 8 hours. This resulted in 92% conversion and gave the block
copolymer, 5, analysis of which revealed the expected increase in molecular
weight (M, = 28 000, PD. = 1.09), while the polydispersity remained very low
and there were no detectable amount of unreacted starting poly(acrylate) block
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as analyzed by a combination of GPC and h.p.l.c. techniques. : This block
copolymer formation proved to be a general procedure and permitted a wide
compositional range of poly(n-butyl acrylate)-b-polystyrene block copolymers
to be prepared with accurate control of molecular weight up to 200 000 a.m.u.
and polydispersities typically in the range of 1.06-1.19 (Scheme 1.
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Scheme 1 *° A . o
* The preparation of functionalized derivatives of 1 also permits the
synthesis of more complex block copolymer architectures. For example, the
difunctional initiator, 6, can be readily prepared and a wide variety of ABA
triblock copolymers, 8, obtained by initial polymerization of buty! acrylate to
give the central B- block, 7, followed by polymerization of the two outer
polystyrene A blocks (Scheme 2). A number of these samples proved to be
interesting functionalized thermoplastic elastomers with novel properties and
potential applications. : :

Scheme 2
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